Quantitative version of Weyl’s law

نویسندگان

چکیده

Abstract We prove a general estimate for the Weyl remainder of an elliptic, semiclassical pseudodifferential operator in terms volumes recurrence sets Hamilton flow its principal symbol. This quantifies earlier results Volovoy (Comm Partial Differential Equations 15:1509–1563, 1990; Ann Global Anal Geom 8:127–136, 1990). Our result particularly improves exponents compact Lie groups and surfaces revolution. And gives quantitative Bérard’s maximal expansion rate topological entropy geodesic flow.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A quantitative version of Myerson regularity

In auction and mechanism design, Myerson’s classical regularity condition is often too weak for a quantitative analysis of performance. For instance, ratios between revenue and welfare, or sales probabilities may vanish at the boundary of Myerson regularity. This paper introduces λ-regularity as a quantitative measure of how regular a distribution is. λ-regularity includes Myerson regularity an...

متن کامل

Quantitative version of a Silverstein’s result

We prove a quantitative version of a Silverstein’s Theorem on the 4-th moment condition for convergence in probability of the norm of a random matrix. More precisely, we show that for a random matrix with i.i.d. entries, satisfying certain natural conditions, its norm cannot be small. Let w be a real random variable with Ew = 0 and Ew = 1, and let wij, i, j ≥ 1 be its i.i.d. copies. For integer...

متن کامل

A Central-Limit-Theorem Version of the Periodic Little’s Law

Abstract We establish a central-limit-theorem (CLT) version of the periodic Little’s law (PLL), which complements the sample-path and stationary versions of the PLL which we recently established in order to explain the remarkable accuracy in comparisons of data-generated model simulations to direct estimates from the data for the aggregate occupancy level in a hospital emergency department. Our...

متن کامل

Quantitative Version of the Oppenheim Conjecture for Inhomogeneous Quadratic Forms

A quantitative version of the Oppenheim conjecture for inhomogeneous quadratic forms is proved. We also give an application to eigenvalue spacing on flat 2-tori with Aharonov-Bohm flux.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Annals of Global Analysis and Geometry

سال: 2023

ISSN: ['1572-9060', '0232-704X']

DOI: https://doi.org/10.1007/s10455-023-09922-z